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OVERVIEW
G New framework to run many more MC iterations in

Bayesian Deep Neural networks (needed for more
general priors). Significant decrease in GPU mem-
ory needs and improvements in runtime.

G Leads to smaller variances of the MC estimators, im-
proving training convergence and final accuracy.

MOTIVATION
G Together with ability to provide uncertainty, one of

the features of BNNs is the flexibility of choosing
posterior distribution q and prior p.

G This choice might significantly impact performance
and numerical optimization.

θ∗ = argmin
θ

KL (qθ||p)− Eqθ [ln p(y|W,x)]

G Some choices lead to a closed form solution of KL.
But others require iterative estimators (like MC).

G For direct implementation, the number of MC itera-
tions for deep BNNs limited by GPU memory.
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G Is there a way to surpass this limit, say by 1000×?
In special cases, yes!

METHODS AND MAIN RESULTS
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G Loss minimization requires computing Eqθ [g(w)].
However, for many qθ, this quantity is intractable.

G Monte Carlo estimation to the rescue!

Eqθ [g(w)] ≈
1

M

M∑
i=1

g(wi), where wi ∼ Qθ.

It is (a) simple, (b) unbiased, (c) asymptotically exact.
G But Monte Carlo estimation also has issues!
G Consider a standard implementation for the MC ap-

proximation of Eqθ
[
w2
]

and Wθ ∼ N(µ, σ2).

Increasing M results in GPU memory explosion.

G Reason: Computation Graphs (CG)
The size of the CG (top Figure) grows linearly O(M)
with the number of MC iterations.

G Solution: Is there a CG reparameterization, such that
size with M = 3 equals size with M = 1?.

G We describe a parameterization tuple: a way to mea-
sure size of CG created by MC.

G Provide recipe: how to identify distributions, where
a CG reparameterization makes the size of CG inde-
pendent of M (see summary in Table).

G Provide API to design your own BNN or use prede-
fined BNN versions of Resnet, Densenet and VGG.

Sampling: W (θ, ξ) Approximate Posterior p.d.f. qθ Prior p.d.f. p(w)

Scaling property family:
W (θ, ξ) = θξ

Exponential(θ) Standard Wald(θ) Exponential Standard Wald Rayleigh
Rayleigh(θ) Weibull(k, θ) Dirichlet Chi-squared Pareto
Erlang(k, θ) Gamma(k, θ) Inverse-Gamma Gamma Erlang
Error(a, θ, c) Log-Gamma(k, θ) Log-normal Error Weibull

Inverse-Gamma(k, θ) Inverse-Gaussian Normal

Location-Scale family:
W (θ, ξ) = µ+ σξ,
θ = (µ, σ)

Normal(µ, σ) Laplace(µ, σ) Logistic Exponential Normal
Logistic(µ, σ) Horseshoe(µ, σ) Laplace
Radial(µ, σ) Normal variations, e.g., Horseshoe, Radial

Log-Normal(µ, σ) Dirichlet Pareto
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EXPERIMENTAL RESULTS
G CIFAR-10 Training: For maximum possible num-

ber of MC iterations for a given model via the
direct MC method, we show: Model size (dashed
blue line indicates GPU capacity, 11GB) and
training time. For some networks, our method
occupies less than 25% of memory and 5× faster.
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MC sampling is much slower using Gradient
Accumulation (GA). Reparameterization reduces
compute time by up to 14× for some networks.

G CIFAR-10 Accuracy: Confidence Set Accuracy and
Confidence Sets for ResNet/DenseNet models with
100 MC iterations (not previously possible). Both
ResNet and Densenet achieve accuracy of more than
90% with 100% confidence, but ResNet is 100% con-
fident on almost 90% of the data.
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