

OVERVIEW

- New framework to run many more MC iterations in Bayesian Deep Neural networks (needed for more general priors). Significant decrease in GPU memory needs and improvements in runtime.
- Leads to smaller variances of the MC estimators, improving training convergence and final accuracy.

MOTIVATION

- Together with ability to provide uncertainty, one of the features of BNNs is the flexibility of choosing posterior distribution q and prior p.
- This choice might significantly impact performance and numerical optimization.

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} KL\left(q_{\boldsymbol{\theta}} | | \boldsymbol{p}\right) - \mathbb{E}_{q_{\boldsymbol{\theta}}}\left[\ln p(\boldsymbol{y} | \boldsymbol{W}, \boldsymbol{x})\right]$$

- Some choices lead to a closed form solution of *KL*.
 But others require iterative estimators (like MC).
- For direct implementation, the number of MC iterations for deep BNNs limited by GPU memory.

Is there a way to surpass this limit, say by 1000×?
In special cases, yes!

Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks

JURIJS NAZAROVS[†], RONAK R. MEHTA[†], VISHNU SURESH LOKHANDE[†], VIKAS SINGH[†] [†] University of Wisconsin - Madison, USA

♦ Loss minimization requires computing E_{q_θ} [g(w)]. However, for many q_θ, this quantity is intractable.
 ♦ Monte Carlo estimation to the rescue!

$$\mathbb{F} \left[a(w) \right] \sim \frac{1}{N} \sum_{\alpha(w)} \frac{M}{M} = \frac$$

$$\mathbb{E}_{q_{\theta}}[g(w)] \approx \frac{1}{M} \sum_{i=1}^{M} g(w_i), \text{ where } w_i \sim Q_{\theta}.$$

It is (a) simple, (b) unbiased, (c) asymptotically exact.
But Monte Carlo estimation also has issues!

♦ Consider a standard implementation for the MC approximation of $\mathbb{E}_{q_{\theta}} [w^2]$ and $W_{\theta} \sim N(\mu, \sigma^2)$.

```
for i in range(M):
    # sample 1 observation from N(0, 1)
    sample = sampler_normal.sample()
    w = mu * 1 + sigma * sample
    loss += w^2 / M
```

Increasing M results in GPU memory explosion.

Sampling: $W(\theta, \xi)$	Approximate Pos	sterior p.d.f. q_{θ}	Prie	or p.d.f. $p(w)$	
Scaling property family: $W(\theta, \xi) = \theta \xi$	Exponential(θ) Rayleigh(θ) Erlang(k, θ) Error(a, θ, c)	Standard Wald(θ) Weibull(k, θ) Gamma(k, θ) Log-Gamma(k, θ)	Exponential Dirichlet Inverse-Gamma Log-normal	Standard Wald Chi-squared Gamma Error	Rayleigh Pareto Erlang Weibull
	Inverse-Gamma(k, θ)		Inverse-Gaussian	Normal	
Location-Scale family: $W(\theta, \xi) = \mu + \sigma \xi,$ $\theta = (\mu, \sigma)$	$ \begin{vmatrix} \text{Normal}(\mu, \sigma) \\ \text{Logistic}(\mu, \sigma) \\ \text{Radial}(\mu, \sigma) \end{vmatrix} $	Laplace(μ, σ) Horseshoe(μ, σ)	Logistic Normal variation	Exponential Laplace ns, e.g., Horseshoe	Normal e, Radial
	Log-Normal(μ, σ)		Dirichlet	Pareto	

Research supported in part by NIH grants RF1 AG059312 and RF1 AG062336. RRM was supported in part by NIH Bio-Data Science Training Program T32 LM012413 grant to the University of Wisconsin Madison.

- Reason: Computation Graphs (CG)
 The size of the CG (top Figure) grows linearly O(M)
 with the number of MC iterations.
- Solution: Is there a CG reparameterization, such that size with M = 3 equals size with M = 1?.
- ♦ We describe a parameterization tuple: a way to measure size of CG created by MC.
- Provide recipe: how to identify distributions, where a CG reparameterization makes the size of CG independent of *M* (see summary in Table).
- Provide API to design your own BNN or use predefined BNN versions of Resnet, Densenet and VGG.

nodel	=	AlexNet(n_classes=10, n_channels=3,
		approx_post="Radial",
		kl_method="repar",
		n_mc_iter=1000)

37th Conference on Uncertainty in Artificial Intelligence July 27-30, 2021

uai2021

EXPERIMENTAL RESULTS

CIFAR-10 Training: For maximum possible number of MC iterations for a given model via the direct MC method, we show: Model size (dashed blue line indicates GPU capacity, 11GB) and training time. For some networks, our method occupies less than 25% of memory and 5× faster. Method Direct Our Type DenseNet ResNet VGG

MC sampling is much slower using Gradient Accumulation (GA). Reparameterization reduces compute time by up to $14 \times$ for some networks.

CIFAR-10 Accuracy: Confidence Set Accuracy and Confidence Sets for ResNet/DenseNet models with 100 MC iterations (not previously possible). Both ResNet and Densenet achieve accuracy of more than 90% with 100% confidence, but ResNet is 100% confident on almost 90% of the data.

