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OVERVIEW METHODS AND MAIN RESULTS

¥ New framework to run many more MC iterations in
Bayesian Deep Neural networks (needed for more

EXPERIMENTAL RESULTS

& CIFAR-10 Training: For maximum possible num-
ber of MC iterations for a given model via the
direct MC method, we show: Model size (dashed
blue line indicates GPU capacity, 11GB) and
training time. For some networks, our method
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occupies less than 25% of memory and 5x faster.
"@ Method Direct Il Our Type B DenseNet Il ResNet [} VGG

MOTIVATION <> Loss minimization l‘eqllil'es Computing "3619 [g(w)] {} Reason: COmputation Graphs (CG) ti """""""""""""""""""""""""""

However, for many gy, this quantity is intractable. The size of the CG (top Figure) grows linearly O (M)
< Monte Carlo estimation to the rescue! with the number of MC iterations.
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general priors). Significant decrease in GPU mem-
ory needs and improvements in runtime.

<> Leads to smaller variances of the MC estimators, im-
proving training convergence and final accuracy.
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& Together with ability to provide uncertainty, one of
the features of BNNs is the flexibility of choosing
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posterior distribution ¢ and prior p. < Solution: Is there a CG reparameterization, such that y | e I " | | [ DA N
: : : S : size with M = 3 equals size with M = 1?. FESEEIS FEEEE eeeeeeéé FEESEE
<& This choice might significantly impact performance 2, [g(w L § : g(w;), where w; ~ Qj. P EFEE S PSS T

and numerical optimization. MC sampling is much slower using Gradient

Accumulation (GA). Reparameterization reduces
compute time by up to 14 x for some networks.

< We describe a parameterization tuple: a way to mea-
sure size of CG created by MC.

& Provide recipe: how to identity distributions, where

It is (a) simple, (b) unbiased, (c) asymptotically exact.
< But Monte Carlo estimation also has issues!
& Consider a standard implementation for the MC ap-

6" = arg min KL (go]|p) — Eq, [Inp(y|W, z)

<> Some choices lead to a closed form solution of K L.

o a CG reparameterization makes the size of CG inde- N wetnod (1 o [l Our
But others require iterative estimators (like MC) proximation of £ [wz} and Wy ~ N(u,07). - @
| a6 ’ pendent of M (see summary in Table). B 4o- :
. . . o | . S
g Eor cl?‘ec‘zjl 1mplement?t19n, (‘;1]106 number of MC itera for i in range (M) : <& Provide API to design your own BNN or use prede- D 5. "
tions for deep BNNs limited by GPU memory. # sample 1 observation from N(0, 1) fined BNN versions of Resnet, Densenet and VGG. S
sample = sampler normal.sample () i= 20 N B
* | DenseNet-121 | W= mu 1 + sigma » sample model = AlexNet (n_classes=10, n_channels=3, :22310- B N
loss += w2 / M approx_post="Radial", D _
[Eh kl_method="repar", o m -q/. — =
. . , ' = RPN NN S \/\% v(bbt kﬁg NN NN
Increasing M results in GPU memory explosion. n_mc_iter=1000) S
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& CIFAR-10 Accuracy: Confidence Set Accuracy and

[DenseNet—ZOl]

Maximum MC lterations

Sampling: W (0, §)

Approximate Posterior p.d.f. g

Prior p.d.f. p(w)

. [ResNet_\?:M Sensenei el - — ST - i Revloioh Confidence Sets for ResNet/DenseNet models with
e Scaling property family] - porentia (o) tandard Wald(0) Xponentia tandard Wa TS 100 MC iterations (not previously possible). Both
P 0 e — B Rayleigh(6) Weibull(k, 6) Dirichlet Chi-squared Pareto ,
(ResNet-50)  [ResNet-101] (VGG-11] [VGG-16] W(0,§) = 6¢ Erlang(k, ) Gamma(k. 6) Inverse-Gamma Gamma Erlang ResNet and Densenet achieve accuracy of more than
.. | _(ResNet-152). _[vGG[vGG-19) Error(a, 6, c) Log-Gamma(k, 0) Log-normal Error Weibull 90% with 100% confidence, but ResNet is 100% con-
40M 80M 120M Inverse-Gamma(k, 6) Inverse-Gaussian Normal fident on almost 90% of the data.
Parameters Location-Scale family: Normal(u, o) Laplace(u, o) Logistic Exponential Normal .

o W(b,&) = u+ ok, Logistic(u, o) Horseshoe(u, o) Laplace % /f g

< Is there a way to surpass this limit, say by 1000x? 0= (u,o) Radial(u, o) Normal variations, e.g., Horseshoe, Radial 3 7] densenett2t 5

In special cases, yes LogNormal .o Dirichle Parete
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