
A Variational Approximation for Analyzing the Dynamics of Panel data

JURIJS NAZAROVS1 , RUDRASIS CHAKRABORTY2 , SONGWONG TASNEEYAPANT1 , SATHYA N. RAVI3 ,
VIKAS SINGH1

1 University of Wisconsin - Madison, USA 2 Amazon Lab 126, USA 3 University of Illinois at Chicago, USA

OVERVIEW
G We propose a probabilistic framework (ME-NODE),

incorporating (fixed + random) mixed effect in ODE,
to appropriately model the variability of panel data.

G Our model can be considered as a smooth approxi-
mation of SDE, but the underlying neural network
can be trained efficiently using ODE solvers.

G For training the model, we derive the new Evidence
Lower Bound loss for our ME-NODE model.

G We show applications in different dynami-
cal/temporal settings including longitudinal
brain image analysis.

MOTIVATION
G Panel data involves longitudinal measurements of

the same set of participants, which requires not only
modeling the temporal dynamics, but also account
for variability within and across individuals.

G Two ways to model dynamical systems:

Types Speed Libraries Uncertainty
SDE % ! !

ODE ! ! %

G To capture some of the characteristics of panel data,
literature incorporates white noise type functions
in differential equation models, leading to various
forms of stochastic differential equation (SDE):

zt = fµ(z, t)dt+ LΣ(z, t) ◦ dβ(t). (1)

G Recent work shows interfacing deep methods with
SDEs but SDE solvers are far more involved than
ODEs.

G Is there a way to utilize ODE solvers, while preserv-
ing stochastic nature of Equation (1)?
In special cases, yes!

METHODS AND MAIN RESULTS
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G Smooth Approximations of Stratonovich SDE

zt = fµ(z, t)dt+ LΣ(z, t) ◦ dβ(t)

żt = f(z, t) + L(z, t)
∑N
n=1 bnϕn(t)

żt = f(z, t) + g(z, t)b

żt = Γ(z, t)w,

where w = β + b
√

Σb ∼ N (β,
√

Σb).

Wong and Zakai Thm.

f(z,t)=Γ(z,t)β

g(z,t)=Γ(z,t)
√

Σb

G Benefits of smooth approximation: (a) models uncer-
tainty like SDE, but (b) need a ODE solver and the
associated computational benefits.

G Final model
zi0 ∼ N (µ, σ), where µ, σ = E(xi)
wi = β + bi ∼ N (β,Σb)
żit = Γ

(
zit
)
wi

xit = D(zit) + εt

G Loss: given the nature of constructed trajectories,
ME-NODE results in a special parameterization of
approximate posterior (and prior):

q(z,w) = 1zobs
−0
{z−0|z0,w}q (z0) q(w)

The final loss takes the form:

1

|S|
∑
s∈S

(
log p (x|zs,ws)− log

q(zs0)q(ws)

p(zs0)p(ws)

)
,

where S = {∀s ∈ S : 1zobs
−0
{z−0|zs0,ws} = 1}.

G Efficient sampling: approximating 1zobs
−0
{z−0|z0,w}.

ABC approximation of 1y {z} as 1Aε,y {z}
G Personalized prediction: utilize observed data to se-

lect personal mixed effect =⇒ better extrapolation.
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DETAILED RESULTS
G Mujoco: Model learns correlation struc-

ture between samples, so improvements
in both interpolation and extrapolation

G Rotation MNIST: The role of dimensionality/size
of w on results is sensible. For dataset with 8 possi-
ble angles. As dimension m grows we see improve-
ments in MSE (left). The MSE remains stable for ex-
trapolation steps (right).
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G Brain imaging: Experiments on two different types
of data (image derived summaries and whole brain
images) suggest viability of ME-NODE for model-
ing longitudinal 3D imaging data.


