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OVERVIEW

< We propose a probabilistic framework (ME-NODE),
incorporating (fixed + random) mixed effect in ODE,
to appropriately model the variability of panel data.

<& Our model can be considered as a smooth approxi-
mation of SDE, but the underlying neural network
can be trained efficiently using ODE solvers.

< For training the model, we derive the new Evidence
Lower Bound loss for our ME-NODE model.

< We show applications in different
cal/temporal settings including
brain image analysis.

MOTIVATION

<& Panel data involves longitudinal measurements of
the same set of participants, which requires not only
modeling the temporal dynamics, but also account
tor variability within and across individuals.

< Two ways to model dynamical systems:

dynami-
longitudinal

Types | Speed Libraries Uncertainty
SDE | X v v
ODE | Vv v X

<& To capture some of the characteristics of panel data,
literature incorporates white noise type functions
in differential equation models, leading to various
forms of stochastic differential equation (SDE):

2t = fu(z, o df(t). (1)

& Recent work shows interfacing deep methods with

SDEs but SDE solvers are far more involved than
ODEs.

<& Is there a way to utilize ODE solvers, while preserv-
ing stochastic nature of Equation (1)?

In special cases, yes!
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METHODS AND MAIN RESULTS
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<—Observed » <€

Unobserved >

<—Interpolation—>» <

Extrapolation >

< Smooth Approximations of Stratonovich SDE & Loss: given the nature of constructed trajectories,

ME-NODE results in a special parameterization of

2zt = fu(z,t)dt + Lx(2,t) o df(t) approximate posterior (and prior):
YWOIlg and Zakai Thm. 1(z,w) = 1 {z_0]20, w}q (20) g(w)
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o Fé:;)wi(“)ﬁ where S = {Vs € 5 : 1,0 {2025, W} = 1}.

< Efficient sampling: approximating 1w {Z—o|20, W}

V).

< Benetits of smooth approximation: (a) models uncer-
tainty like SDE, but (b) need a ODE solver and the

where w = 3 4 b/, ~ N (B ABC approximation of 1, {z} as 14_, {2}

& Personalized prediction: utilize observed data to se-
lect personal mixed effect = better extrapolation.

associated computational benetfits. i * X i
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DETAILED RESULTS

<> Mujoco: Model learns correlation struc-
ture between samples, so improvements
in both interpolation and  extrapolation

< Rotation MNIST: The role of dimensionality/size
of w on results is sensible. For dataset with 8 possi-
ble angles. As dimension m grows we see improve-
ments in MSE (left). The MSE remains stable for ex-
trapolation steps (right).
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< Brain imaging: Experiments on two different types
of data (image derived summaries and whole brain
images) suggest viability of ME-NODE for model-
mg long1tudmal 3D imaging data.




