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OVERVIEW
✧ We show how to select significant uncertainty in vi-

sion with help of Random Fields and Differential
Equations theories.

✧ We develop a probabilistic framework: Warping
Neural ODE (based on Neural ODE and Wasserstein
distance), which enables learning a diffeomorphism
between uncertainty maps and Gaussian Random
Fields.

✧ In comparison to pixel-wise hypothesis testing (HT),
our method accounts for pixel correlation, common
in Vision.

✧ We show applications for different ways of gener-
ating uncertainty maps, like Bayesian Neural Net-
works, Variational Auto Encoders and MC dropout.

✧ We show applications in different vision settings,
like generation, depth estimation and segmentation.

MOTIVATION
✧ With probabilistic models we are able to create a no-

tion of uncertainty in vision, e.g. pixel-wise vari-
ance. However, which values are statistically signif-
icant, given that scale depends on a nature of the
problem?

✧ Two common ways to select significant regions:

Types Theoretical Pixel # of
Support Correlation Tests

Pixel-wise HT ! % # of pixels
Quantile % % 1

✧ Is there a way to perform 1 HT with theoretical sup-
port and acknowledging pixel correlation? Yes!

METHODS AND MAIN RESULTS

✧ We consider the pixel (voxel)-wise uncertainty map
Mx as an RF over domain S, and derive the signifi-
cance of uncertainty as Hypothesis Test:[

H0 : ∀s ∈ S,Mx(s) = 0
HA : ∃s ∈ S,Mx(s) ̸= 0

✧ Gaussian Kinematic Formula

Theorem 1. If F is GRRF (isotropic or non-isotropic),
EEC is given as,

P (Fmax ≥ u|H0) ≈ E{ϕ(Au)} =
D∑

d=0

Ld(S,Λ(S))ρd(u),

where Fmax=maxs∈S Mx(s) is a common test statistics.
✧ Uncertainties from probabilistic models are Gaus-

sian Related Random Fields!

✧ Warping to GRF!

Theorem 2. The domain S of the GRRF F can be warped
via a one-to-one smooth transformation Γ to a domain
S′ without fundamentally changing the problem, namely:
P (maxs′∈S′ F (s′) ≥ t) = P (maxs∈S F (s) ≥ t).

✧ Learning Warping Φ(S): two desired properties

– Φ(S) is diffeomorphism: ∃ Φ1 and Φ−1.

– the warped version is an isotropic GRF

✧ Warping Neural ODE: Using Neural ODE with
Wasserstein distance, we parameterize a diffeomor-
phism from the Lie group, which allows to compute
the Reverse warping through running DE reverse.
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DETAILED RESULTS
✧ Ways to generate uncertainty mask: we provide

experiments of our method to detect significant re-
gions of uncertainty mask, generated by common
probabilistic models

✧ Generation (VAE): Results on celebA (ResNet-18
and ResNet-50) and AFHQ (ResNet-18)

✧ Depth estimation (Dropout): KITTI

✧ Segmentation (Dropout): MS-COCO


