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Abstract

Recent multimodal models such as VilBERT and UNITER
have shown impressive performance on vision-language tasks
such as Visual Question Answering (VQA), Visual Referring
expressions, and others. However, those models are still not
very robust to subtle variations in textual and/or visual input.
To improve model robustness to linguistic variations, here we
propose a novel adversarial objective function that incorpo-
rates information about the distribution of possible linguistic
variations. And to improve model robustness to image ma-
nipulation, we propose a new VQA-specific mixup technique
which leverages object replacement. We conduct extensive
experiments on benchmark datasets and demonstrate the ef-
fectiveness of the proposed mitigation methods in improving
model robustness.

Introduction

Recent development in vision-and-language (V+L) and mul-
timodal research have shown great performance in a wide
variety of V+L tasks (Zhou et al. 2020; Hu et al. 2020; Mu-
rahari et al. 2020; Wang et al. 2020; Alberti et al. 2019;
Hao et al. 2020; Majumdar et al. 2020; Cao et al. 2020),
such as Visual Commonsense Reasoning (VCR) (Zellers
et al. 2019), Referring Expression Comprehension (Yu et al.
2016), and Visual Question Answering (VQA) (Antol et al.
2015), in which we are interested in particularly.

The main goal of VQA tasks is to answer an open-end nat-
ural language questions based on an observed image. Given
a rising integration of vision-capturing devices in our daily
life, including assistive devices, security cameras, medical
diagnosis machines, robots and etc, VQA has a broad range
of applications, which are centered around a human user
asking a machine questions about images. Since VQA sys-
tems can also be incorporated in mission-critical applica-
tions, like a security cameras, it vital for a VQA system to
work reliably, and have to be aware of different variations of
questions asked by a user. For example, given the same im-
age and three semantically similar questions: “How many
cookies”, “How many cookies are there?”, “How many
cookies are on the plate?”, VQA model should produce the
same answer. In other words, VQA system has to be robust
to linguistic variations. In addition to linguistic variations
in questions, it is desirable that VQA system show good
performance in generalization to different items surrounding

an object of question. For example, given a question “How
many cookies are on the plate?”, model should provide a
right answer regarding if there are bananas, soup, broccoli
or other objects around. We refer to this source of robust-
ness as visual manipulation.

Despite the rapid progress in recent years in VQA sys-
tems, current methods are still far from being perfectly ro-
bust to valid linguistic variations and general visual ma-
nipulations, even given the same language. Problem is get-
ting worse, when VQA systems is targeting to cover sev-
eral languages. One of the way to improve robustness of
the VQA systems (and VLM in general) to linguistic vari-
ation or visual manipulation is to create a dataset deliber-
ately diversified with respect to the source of the robust-
ness, with an idea to train a more generalised model. For
example (Shah et al. 2019; Kant et al. 2021) introduced new
datasets targeting linguistic variation of questions, by in-
troducing questions rephrased by a human and using back-
translation, respectively. Authors in (Iyyer et al. 2018) fo-
cus on manually creating an adversarial dataset by human,
which can trick the VQA system. From the visual manipu-
lation content, (Agarwal, Shetty, and Fritz 2020) introduce
a new VQA dataset, generated by semantic manipulations
based on in-painting GAN(Shetty, Fritz, and Schiele 2018).
While generating new datasets targeting specific sources of
variations/manipulations can be useful for evaluation of the
robustness of VQA systems towards this source, it is less ef-
ficient for training to improve the robustness of the model.
While ideally data should contain an interaction with all
possible combinations of questions, natural images and an-
swers, to generate such datasets is infeasible.

In addition to generating new datasets targeting the spe-
cific source of data variation, another direction is to focus on
training methods, by introducing regularization components
in the loss or new architectures (Shi et al. 2020; Gan et al.
2020). The limitation of these systems, is that the training
procedure does not explicitly utilize the information about
linguistic variation or visual manipulation in their training.

To overcome these limitations, we introduce two novel
components during training. First, to improve robustness of
VQA system to linguistic variations, we propose to use an
adversarial perturbations, similar to (Gan et al. 2020), but
with (a) explicit incorporation of possible linguistic vari-
ations to the noise generation and (b) regularization terms



in the loss, which preserve the ‘validity’ of adversarial per-
turbations, forcing them to be similar to observed linguistic
variations. Second, to improve general robustness to visual
manipulations, we introduce a novel mixup image replace-
ment technique, which is based on substituting objects be-
tween ‘positive’ images, i.e. images which have the ques-
tions with similar semantic meaning. In addition, we intro-
duce the new metric, the consensus score area under curve
(CS-AUC), to evaluate the robustness of VQA systems.

We evaluate our model on the VQA Rephrasings bench-
mark (Shah et al. 2019), which measures the model’s an-
swer consistency across several rephrasings of a question
and we show that our method outperforms current SOTA in
metrics measuring robustness of the model to linguistic vari-
ations and a general VQA score. We extensively ablate with
different choices of explicit incorporation of linguistic vari-
ations in our model and different method for image mixup
replacement.

Related work

VQA datasets to target a source of variation: To ad-
dress different types of robustness one of the approaches is
to generate datasets, either synthetically using machine/deep
learning tools or through crowdsourcing, which explicitly
include the desired variation. For example, motivating that
bias in our language tend to be a simpler signal for learn-
ing than visual modalities, and to improve a generalization
of the VQA system, authors in (Goyal et al. 2017) propose
a new dataset, VQA V2.0. It balances the popular VQA
dataset (Antol et al. 2015) by collecting complementary im-
ages such that every question in the balanced dataset is asso-
ciated with not just a single image, but rather a pair of sim-
ilar images that result in two different answers to the ques-
tion. To adjust for shift in distributions of answers per ques-
tion type (e.g., “what color”, “how many”) between the train
and test sets and address over-fitting, (Agrawal et al. 2018)
propose a new dataset VQACP (for both versions VQA V1
and V2). It is a reshuffling of the original VQA (V1, V2)
dataset, such that the distribution of answers per question
type (e.g., “what color”, “how many”) differs between the
train and test sets. Authors in (Li et al. 2021; Rosenberg et al.
2021) study on the vulnerability of VQA models when un-
der adversarial attacks by human. To measure the robust-
ness of SOTA VLM, they proposed new datasets, where
validation and testing sets consist only of examples, which
were successful in attacking the SOTA. To incorporate log-
ical reasoning in data sets, several papers introduced new
datasets. For example, authors in (Gokhale et al. 2020) con-
struct an augmentation of the VQA dataset as a benchmark,
with questions containing logical compositions and linguis-
tic transformations (negation, disjunction, conjunction, and
antonyms). Similarly, new datasets were introduced in (Sel-
varaju et al. 2020; Hudson and Manning 2019). To highlight
the linguistic variation, authors in (Shah et al. 2019) intro-
duced VQA-Rephrases, which is based on VQA V2.0 val-
idation and provide 3 rephrasing by humans for 40k ques-
tions on 40k images. From the visual manipulation content,
(Agarwal, Shetty, and Fritz 2020) introduce a new VQA

dataset, generated by semantic manipulations based on in-
painting GAN(Shetty, Fritz, and Schiele 2018).

Robustness to linguistic variations: There are several
ways to augment the language input. Particularly, a com-
mon way is to paraphrase the questions in a way, to pre-
serve semantic. For example, authors in (Shah et al. 2019)
propose to generate augmented questions, by training a new
questions-generator as a separate model block in a cycle-
consistent way, similar to cycle-GAN(Zhu et al. 2017). This
allows to generate diverse, semantically similar variations
of questions conditioned on the answer, which are used to
improve robustness of VQA system. Although not for VQA
system, but for language model, similarly, authors in (Iyyer
et al. 2018) proposes syntactically controlled paraphrase net-
works (SCPNs) and use them to generate adversarial exam-
ples. Given a sentence and a target syntactic form (e.g., a
constituency parse), SCPNs are trained to produce a para-
phrase of the sentence with the desired syntax. Another ex-
ample of improving robustness of the model through training
is (Kant et al. 2021), where authors proposed a novel training
paradigm (ConClaT) that optimizes both cross-entropy and
contrastive losses, which encourages representations to be
robust to linguistic variations in questions while the cross-
entropy loss preserves the discriminative power of represen-
tations for answer prediction.

Robustness to visual manipulations: One of the exam-
ples to improve robustness of the model to visual manipula-
tions is a mixup, proposed by authors in (Zhang et al. 2017).
Mixup was a new augmentation scheme for image classifi-
cation tasks, which is presented as a linear combination of
input and one-hot representation of outputs (labels).

Adversarial perturbations: Villa Adversarial perturba-
tions literature in general is focusing on finding an adversar-
ial attack to break the model. For example, authors in (Xu
et al. 2018) show how for to learn an adversarial image in
VQA settings, such that for the same questions leads to a
different answer. Authors in (Gan et al. 2020) went further
and instead of learning an adversarial attack on a VQA sys-
tems, they learned an adversarial perturbations of the latent
space, to improve robustness of the model.

Background & Notation

Data processing. To utilize Neural Network for VQA sys-
tem, it is common to preprocess input data (Image, Ques-
tion, Answer) to obtain an appropriate format for the model.
Given an image, we apply pre-trained maskrcnn to derive
bounded boxes Figure 1 of objects and use corresponding
features of those boxes (p-dimensional vector) as an input
in our model. Given question in a text form, the common
strategy is to tokenize them, i.e. each word is represented
by a number. To perform a tokenization, we use pre-trained
(bert-base-uncased) BertTokenizer. Since questions vary in
their length, it is important to get the same length for all
questions. Thus, given a fixed length, we either cut the sen-
tence or append 0 to make it a proper length. To understand
where the starting and end of sentence, special tokens are
attached to the beginning (token 101) and end (token 102).



Figure 1: Example of object segmentation as a preprocessing step
to create an input for VQA system

In VQA settings, answer is usually correspond to a single
word, e.g. ‘Yes’, ‘No’, ‘Salad’, ’5’ and etc. Given the whole
set of answers (in VQA-V2 is 3129 classes), answers are
represented by the ‘VQA-score’ (mentioned above) in k of
the 3129 positions, as a ’k-hot’ representation.

Notation. For the rest of the text we use following no-
tation: (Image, Question, Answer) is (v, q, y); qi ∈ Q is
an element of a set of anchor questions (not rephrases) Q;

{qji }
Mi

j=0 is a set of similar questions to a question qi, where

q0i = qi and Mi is a number of similar questions, which
varies depending on definition of ‘similarity’ and question qi
(more on this in method section); zq is a latent representation
of a question q. We refer to VQA system with parameters θ
as fθ, and adversarial perturbation generator with parame-
ters φq as gφq

.

Adversarial perturbation. One of the way to improve
robustness of VQA system is to learn an adversarial per-
turbation, which is added to the latent representation. Intu-
itively, we can think of learning an adversarial perturbations
as learning the ‘distance’ to the decision boundary. From one
perspective, we want to learn a noise (‘distance’) big enough
that VQA model fails in its prediction, from another we want
the VQA model to predict adversarial sample as a correct
one. Following (Gan et al. 2020), the optimization objective
is represented as a mini-max problem:

min
θ

max
φq

E
(v,q,y)∼D

E
α∈N(0,1)

{

LBCE (fθ(v, q),y)

+ LBCE

(

fθ
(

v, q + gφq (α)
)

,y
)

+KL
(

fθ
(

v, q + gφq (α)
)

, fθ(v, q)
) }

(1)

which has two objectives:

1. Given a generated noise gφq
(α), where α ∼ N(0, 1),

VQA model tries to minimize the prediction error of both
original and perturbed data.

2. Given a VQA system fθ, the noise generator model tries
to create a noise, to maximize the error of 1) perturbed
data classification, 2) KL divergence between predictions
with perturbed and original data.

Note that we abuse notation and use q + gφq
(α) to refer

that adversarial pertubation is added to latent representation
of a question q.

Figure 2: Adversarial perturbation generation networks. They uti-
lize information about latent representation zq of linguistic varia-

tions {qji }
Mi

j=0 and generate adversarial perturbation εjqi for a ques-

tion q
j
i .

Mixup. Another known type of augmentation is ‘mixup’,
originally introduced in (Zhang et al. 2017) as a way to im-
prove robustness of image classification models in super-
vised settings. The primary idea of the original paper is, in-
stead of considering the tuple of (image, class), we consider
a linear combination of two tuples as image = λ imageA +
(1−λ)imageB and class = λ classA+(1−λ)classB , where
class is one/k-hot representation, and λ is a mixup ratio.
Similar settings were explored in (Chen, Yang, and Yang
2020) but for language models, and thus instead of images
the mixup of language components were used.

Method
While we propose two separate methods how to improve ro-
bustness of VQA system to both linguistic variation and vi-
sual manipulations, we start with the description of method
to deal with linguistic variation first.
Adversarial perturbations to improve robustness to
linguistic variations.

While the strategy of augmenting latent representation with
adversarial perturbation in (1) technically sound, we real-
ized that in current formulation there are ways of possi-
ble improvement: (a) current noise generation network g
only depends on alpha, and can generate the same noise
despite the linguistic variation, (b) loss does not incorpo-
rate any information regarding a linguistic variation explic-
itly. To address aforementioned issues we propose the fol-
lowing: First, since different questions have their own lin-
guistic variations, we condition noise generation network on
additional information provided by question (more on this
below). Second, to incorporate a linguistic variation explic-
itly we introduce an additional regulation term on generated
noise, KLlv, which forces to generate adversarial perturba-
tion, such that resulted augmented latent representation is
not far from latent representation of elements from a set of

linguistic variations of q
j
i :

KLlv =
∑

a∈O

KL

(

{

q
j
i + gφq (α) , qji

}Mi

jj=0

,
{

q
j
i

}Mi

j=0

)

(2)

With this contributions, we incorporate new regulation
KL term from Eq.2 and obtain the loss in following equa-
tion.



Figure 3: Example of different images of the Similar Batch, corre-
sponding to the question ’How many cookies can be seen?’, which
correspond to different questions and answers, but with similar se-
mantic meaning.

min
θ

max
φq

E
(v,q,y)∼D

E
α∈N(0,1)

{

LBCE (fθ(v, q),y)

+ LBCE

(

fθ
(

v, q + gφq (α, q)
)

,y
)

+KL
(

fθ
(

v, q + gφq (α, q)
)

, fθ(v, q)
)

−KLlv

}

For our condition noise generation network, we explore
several directions. As we mentioned our motivation is that
adversarial noise should be generated based on information
about the linguistic variation. Thus, we considered two types
of networks (visualization is presented in Figure 2):

1. Network 1: noise is generated conditionally on a latent
representation of a question only

2. Network 2: noise is generated conditionally on a latent
representation of a question and summary statistics (sam-
ple mean and sample variance) of latent representation of
either a) rephrase of a question or b) similar questions.

Since our proposition, noise generation network condi-
tioned on distribution of linguistic variations and KL of
linguistic variations, KLlv, requires an access to linguistic
variations of questions, next we introduce the way to con-
struct these linguistic variations.

Generating linguistic variations.

To generate linguistic variations of questions for training,
we consider two different methods: Rephrases and Similar
questions. We refer to them as Rephrase Batch and Similar
Batch respectively. While both methods provide a linguis-
tic variation, preserving semantical meaning, they do it in a
different degree, which we discuss below.

Rephrase Batch: Following (Shi et al. 2020), our
rephrase batch is generated by augmenting the train
set with question paraphrases using 88 different Mari-
anNMT (Junczys-Dowmunt et al. 2018) back-translation
model pairs released by HuggingFace (Wolf et al. 2019).
To construct the data, three unique paraphrases, which have
≥ 0.95 similarity with the original question, were randomly
selected. The similarity is defined as a cosine similarity
Sentence-BERT (Reimers and Gurevych 2019) encoding of
questions. Note: that for rephrased questions correspond to
the same image and answer. That is, for the triplet (I, Q, A),
and rephrases of Q, Q’, we still have the same I and A.

Similar Batch: For the similar batch, instead of generat-
ing new questions, we looking through the training set, to
find similar questions. Namely, given an anchor question,
we find questions ≥ 0.95 similarity with the anchor ques-
tion. Similarity score is computed same way as in rephrase

Rephrase Batch Similar Batch

How many cookies can it be
seen?

How many cookies?

How many cookies can you
see?

What types of cookies are in
the package?

How many cookies can we
see?

How many types of cookies
are there?

Table 1: Examples of questions, to introduce linguistic variation
in the data, constructed using Rephrase and Similar methods.

Figure 4: Example of selecting background boxes with different
level of overlapping area with objects related to question.

batch. Because number of similar questions vary per anchor
question, in our experiments we set an upper bound on how
many similar questions to use. Note: in contrast to rephrased
questions, similar questions correspond to different images
and answers, since answers depends on images. In the future
we refer to such images as ‘similar’ images, since they cor-
respond to similar questions. Examples of images are pro-
vided in Figure 3

Difference between Rephrase and Similar batches:
While two methods generate sentence with similar seman-
tically meaning and with linguistic variation, they are still
different. Table 1 provide examples to the same original
question “How many cookies can be seen?”. Rephrased
questions have less linguistic variations but better semantic
preservation, while similar questions provide more linguistic
variations, but might drift away in semantic meaning.

Mixup replacement to improve robustness to visual
manipulations.

As mentioned in (Goyal et al. 2017), our language tend to
carry a simpler signal for learning than visual modalities,
which makes it easier for VQA system to learn to focus
more on questions and pay less attention to visual compo-
nents. In addition, authors in (Agarwal, Shetty, and Fritz
2020) showed that current VQA systems are brittle to se-
mantic variations in the image, revealing the false correla-
tion that the models exploit to predict the answer. To ad-
dress this issue, they proposed for each image in the train-
ing set, generate a single copy, by removing objects not re-
lated to the question. This was implemented with in-painting
GAN(Shetty, Fritz, and Schiele 2018). Motivated by this
idea and mixup for image classification problem, we pro-
posed a novel augmentation technique, mixup replacement.
While using in-painting GAN provide images of a good
quality, with objects removed, this leads to extra computa-
tional overload. in addition, for each new image, we have
to re-run segmentation model to define bounded boxes for
input to the network.

In contrast to replacing objects which are not related



to questions, we propose to replace features of extracted
bounded boxes, which are classified as background objects,
between semantic similar images. The motivation behind se-
lecting similar images is that background objects between
such images have positive correlation. Thus, replacing these
objects does not destroy the conceptual meaning of the im-
age, but provides variation for model to learn to focus on
object in the question. We hypothesis that if robust model
knows how to handle unrelated to the question objects, then
model should know how to handle the same objects in a con-
ceptually similar images. Forcing model to see a lot of dif-
ferent objects unrelated to the question, should make it to
pay more attention to related objects.

From implementation perspective, given a batch of sim-
ilar images, we use pre-trained Faster R-CNN to extract
bounded boxes, select those which are classified as back-
ground and which which have overlap area ≤ p% with
objects related to question, where p is a hyper-parameter,
Figure 4. To find semantic similar images, we use ‘Similar
Batch’, mentioned before, to find similar questions, and use
their corresponding images to replace objects. Given a Batch
1 of related images, i.e. images with similar questions, we
create a permuted version, Batch 1’. We use corresponding
images (in order) from Batch 1’ to replace objects in Batch
1. The implementation of the algorithm is visualized in Fig-
ure 5.

A more trivial version of mixup replacement is to replace
random boxes between similar images, as demonstrate in
Figure 6. While it provides a lot of variation to the image,
it might also replace features of objects, related to the ques-
tion.

Note that our method is different from a general mixup
used as robustness tool in image classification tasks, since
we do not consider a linear combination on pixel-wise level,
but replacement of patches of images, namely latent features
of bounded boxes.

Experiments

In our experiments we seek to demonstrate the improvement
of our proposed approach in robustness of VQA systems to
linguistic variations and visual manipulations. We describe
used datasets and metrics below.

Datasets

In our experiments we utilize the VQA v2.0 (Goyal et al.
2016), VQA-Rephrasings (Shah et al. 2019). VQA-V2 is a
set of COCO natural images, with corresponding open-end
questions and 10 answers per question (obtained from 10
different people). Since each question contains 10 answers
(not necessary the same), instead of selecting one answer,
data provides a score for each answer. Score is computed

as min( # of humans provided this answer

3
, 1). The intuition is that if

a model predicts as good as 3 humans, then we should get
maximum score of 1. VQA-V2 contains nearly 443K train,
214K val and 453K test instances. VQA-Rephrasings con-
sists of 3 human rephrasings for ∼40k questions on ∼40k
images from the VQA V2 validation dataset, resulting in a
total of ∼120k questions rephrasing by humans. The dataset

was designed to evaluate the robustness of VQA models
towards human rephrased questions. In addition to these
datasets, we utilize two methods to generate linguistic varia-
tions, which are used for training, Rephrase Batch and Sim-
ilar Batch. These are based on VQA-Rephrasings by Back-
translation (Shi et al. 2020). Detailed description is provided
in method section.

Metrics

To measure the performance of our model, we refer to two
metrics: general VQA-score and Consensus Score (k).

VQA-score. The score is similar to a standard classifica-
tion accuracy, i.e. it measures how correct the model’s pre-
diction is. However, it accounts for the specification of a
VQA setup. In VQA-V2 dataset (Goyal et al. 2017) (and
other datasets based on it) each question has 10 answers. In-
stead of selecting the best answer according to a rule, like
the most frequent answer, authors proposed to report answer

with the score: min( # of humans provided this answer

3
, 1). And thus,

answers are reported as a k-hot representation, with assigned
scores in rage [0,1]. Then when model predicts a class (sin-
gle class), instead of selecting this class, we select the score,
corresponding to it. Which is later averaged across number
of samples. As you can see, if data set contain only 1 an-
swer per question with score 1, then VQA-Score would cor-
respond to a standard accuracy.

Consensus Score, CS(k). Intuitively, for a VQA model to
be consistent across various rephrasings of the same ques-
tion, the answer to all rephrasings should be the same. It is
measured by a Consensus Score CS(k), (Shah et al. 2019).
For every group Q consisting of n rephrasings, we sample
all subsets of size k. The consensus score CS(k) is defined
as the ratio of the number of subsets where all the answers
are correct and the total number of subsets of size k. The an-
swer to a question is considered correct if it has a non-zero
VQA accuracy θ as defined in (Agrawal, Batra, and Parikh
2016). CS(k) is formally defined as:

CS(k) =
∑

Q′¢Q,|Q′|=k

S (Q′)
nCk

, (3)

where

S
(

Q
′) =

{

1 if ∀q ∈ Q′ θ(q) > 0,

0 otherwise.
(4)

and nCk is number of subsets of size k sampled from a set
of size n. As consensus score is a all-or-nothing score, to
achieve a non-zero consensus score at k for a group of ques-
tions Q, the model has to answer at least k questions cor-
rectly in a group of questions Q. When k = |Q| (e.g. when
k = 4 in VQA-Rephrasings), the model needs to answer all
rephrasings of a question and the original question correctly
in order to get a non-zero consensus score. It is evident that
a model with higher average consensus score at high values
of k is quantitatively more robust to linguistic variations in
questions than a model with a lower score.

Consensus Score - Area Under the Curve (CS-AUC).
Given a set of measures of consensus scores for a differ-
ent k, e.g. CS(1), . . . , CS(4), the comparison between dif-
ferent experiments might be confusing. For example CS(1)



Figure 5: Implementation of mixup replacement technique to improve robustness of VQA to visual manipulations. Batch 1 is generated as
‘Similar Batch’, mentioned before. That is, all questions are similar in semantic meaning, but correspond to different images and answers.
Batch 1’ is a shuffled version of Batch 1. By replacing objects between similar images, we decrease the probability of introducing out-of-
distribution patches.

Figure 6: Example of randomly selected boxes, where each col-
umn correspond to percentage of selected boxes, and each row is a
new sample. Black boxes correspond to background objects, while
colored boxes to non-background boxes.

of model A can be higher, then CS(1) of model B, but it
might be reverse for CS(4). Thus, motivated by AUC of
ROC, we propose to compute a Consensus Score Area Un-
der the Curve (CS-AUC). Following the trapezoid rule of
numerical integration, we compute CS-AUC as 1

2
CS(1) +

CS(2) + · · ·+ CS(k − 1) + 1
2
CS(k).

Model, hyper-parameter settings and hardware

Main VQA Model Following (Kant et al. 2021) we use a
multimodal transformer (MMT) as a main model f in our
VQA system. MMT is currently a representative of SoTA
models (Jiang et al. 2020; Lu et al. 2019; Chen et al. 2020;
Li et al. 2020; Fukui et al. 2016) in VQA that rely heavily on
multi-modal transformer architecture. The used model was
originally inspired by (Chen et al. 2020), with 6 layers and
768-dim latent representation of inputs (embedding). Being
a Vision Language Model in its core, our VQA system takes
as input two different modalities: Language (Question) and
Visual (Image). The question tokens are encoded using a
pre-trained three layer BERT (Devlin et al. 2019) encoder

Figure 7: Uniter-like architecture used in our experiments. It is
split in 3 main blocks: First block utilizes pre-trained models to tok-
enize questions and extracted bounded boxes from images; Second
block extract latent representation of input features and perform
multimodal transformation; Third block uses extracted and aligned
textual and visual features to provide an answer for VQA system.
We add adversarial perubations to input of the second block.

which is fine-tuned along with the multimodal transformer.
Images are processed by detecting object regions and ex-
tracting features from a frozen ResNeXT-152 (Xie et al.
2017) based Faster R-CNN model (Ren et al. 2015).

However, notice that our method of improving the robust-
ness of VQA relies on adversarial pertubation of latent space
and mixup replacement, which are not strictly limited to the
architecture of MMT selected for these experiments.

Adversarial Perturbations Generative Model Recall
that input to our VQA system is multi-model, namely a ques-
tion and an image. After the pre-processing steps, questions
are tokenize and still preserve sequential information, while
each image is represented by n bounded boxes, which in
general do not contain any sequential information and can
be shuffled in any order. Given that we focus on generat-
ing adversarial perturbations to improve robustness to lin-
guistic variations, our generation network, applied to ques-
tions components, is conditioned on question itself. And



VQA-Rephrases (%) VQA-Rephrases BT (%)
Method VQA-Score (%)

CS(1) CS(2) CS(3) CS(4) CS-AUC CS(1) CS(2) CS(3) CS(4) CS-AUC

Contrast and classify (Trained by us) 65.10 66.66 59.41 55.08 52.02 173.83 71.74 70.55 69.92 69.47 211.44

1. AP to text, no KLlv 65.97 66.91 59.68 55.36 52.32 174.12 72.47 71.43 70.88 70.50 213.62
2. AP text (Network 1), and
KLrephrase

65.24 67.24 60.45 56.29 53.31 177.00 72.12 70.98 70.36 69.91 212.36

3. AP text (Network 2), and
KLrephrase

65.23 67.21 60.42 56.29 53.33 176.58 72.13 70.95 70.31 69.86 212.23

4. AP text (Network 1), KLsimilar 65.41 66.40 58.96 54.54 51.44 172.55 72.08 70.85 70.19 69.72 211.89
5. AP text (Network 2), KLsimilar 65.30 66.66 59.38 55.03 51.97 173.52 71.98 70.64 69.95 69.46 210.73

6. AP text (Network 2), KLsimilar,
mixup text

64.41 66.25 59.69 55.72 52.88 175.07 70.82 69.72 69.13 68.70 209.20

7. AP text (Network 2), KLsimilar,
mixup both

65.17 66.43 58.72 54.10 50.84 171.35 72.00 70.39 69.53 68.92 210.06

8. AP text (Network 2), KLsimilar,
mixup replacement random object

64.93 66.21 58.99 54.72 51.73 171.72 71.36 69.98 69.23 68.71 208.26

9. AP text (Network 2), KLsimilar,
mixup replacement overlap

62.76 64.28 56.81 52.44 49.40 165.77 69.39 67.81 66.99 66.44 202.15

10. AP text (Network 2), KLsimilar,
mixup text, mixup replacement over-
lap

61.88 63.63 57.06 53.14 50.43 135.42 68.25 67.08 66.46 66.02 166.55

Table 2: Notation: (a) ‘AP’ is Adversarial Perturbation, (b) ‘Network 1’ and ‘Network 2’ corresponds to Adversarial Perturbation Network
conditioned on question only and question with summaries about linguistic variations correspondingly, Figure 2, (c) KLlv, KLrephrase, and
KLsimilar correspond to KL with Linguistic variations from any source, from rephrased question and from similar questions correspondingly.
(d) mixup replacement corresponds to our proposed technique to replace features of bounded boxes of images, either random boxes or
background boxes based on overlap.

thus, should preserve sequential information. While there
are several sequential networks, e.g. Neural ODE (Chen
et al. 2018), Dilated CNN (Yang et al. 2017), and etc, we
chose a simple LSTM model (Hochreiter and Schmidhuber
1996). While we do not focus on adding adversarial noise
to latent representation of images, it can be done with Fully
Connected networks and reshaping tensors, since they do not
contain order information.

The model is trained with AdamX optimizer with initial
learning rate of 1e-4 and a learning rate scheduler. Such that
learning rate is decayed by 0.7 at 5k and 15k iterations. We
train our model for 10 epochs with batch size of 256, using
8 Tesla V100 GPUs to split the batch. The code was imple-
mented in PyTorch.

Baselines
Recall that in our experiments we seek to demonstrate the
improvement of our proposed approach in robustness of
VQA systems to linguistic variations and visual manipula-
tions. Namely, we would like to evaluate through ablation
study the effect of several components: (a) type of condi-
tion used in generating adversarial perturbations for text;
(b) inclusion of KLlv term to regulate the generated adver-
sarial perturbations; (c) significance of using different types
of linguistic variation for training, namely ‘Rephrase Batch’
and ‘Similar Batch’; (d) Not sure if we need it traditional
mixup for text and images; (e) our newly proposed method
mixup replacement for objects in images. In addition, our
main baseline is current SOTA for robustness to linguistic
variations (Shi et al. 2020), which utilizes the alternative
training mixing two types of losses, contrastive and typical
cross-entropy loss.

Results

We provide results of our experiments in the Table 2 and
in the following text we refer to the model from the table

in braces: e.g. (1-5). First, we compare adversarial pertur-
bation (AP) to text and vary the inclusion of KLlv term and
conditional network (1-5). We see that including KLrephrase

term provides a significant improvement in consensus score
for VQA-Rephrase. There is no significant difference be-
tween Network 1 and Network 2 (2-3), given inclusion of
KLrephrase. Given an inclusion of KLsimilar and usage of
Network 2, we compare different mixup strategies (5-10).
We see that adding text mixup technique (6) provides the
highest improvement in consensus score compare to other
mixup strategies; however, applying mixup to both image
and text, provides a higher improvement in VQA-score.
Comparing mixup replacement techniques (8-10), we see
that the biggest improvement in VQA-Score and CS corre-
sponds to mixup replacement of random objects.

Conclusion
In this paper we introduce two novel training components
to improve robustness of VQA systems. First, to improve
robustness of VQA system to linguistic variations, we pro-
pose to use an adversarial perturbations, similar to (Gan et al.
2020), but with (a) explicit incorporation of possible linguis-
tic variations to the noise generation and (b) regularization
terms in the loss, which preserve the ‘validity’ of adversar-
ial perturbations, forcing them to be similar to observed lin-
guistic variations. Second, to improve general robustness to
visual manipulations, we introduce a novel mixup image re-
placement technique, which is based on substituting objects
between ‘positive’ images. Through our experiments and ab-
lation studies we show the benefits of explicit incorporation
of linguistic variation to adversarial perturbations for a latent
representation to improve robustness to linguistic variations.

References

Agarwal, V.; Shetty, R.; and Fritz, M. 2020. Towards causal
vqa: Revealing and reducing spurious correlations by in-



variant and covariant semantic editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 9690–9698.

Agrawal, A.; Batra, D.; and Parikh, D. 2016. Analyzing
the behavior of visual question answering models. arXiv
preprint arXiv:1606.07356.

Agrawal, A.; Batra, D.; Parikh, D.; and Kembhavi, A. 2018.
Don’t just assume; look and answer: Overcoming priors for
visual question answering. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 4971–
4980.

Alberti, C.; Ling, J.; Collins, M.; and Reitter, D. 2019. Fu-
sion of detected objects in text for visual question answer-
ing. arXiv preprint arXiv:1908.05054.

Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zit-
nick, C. L.; and Parikh, D. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international confer-
ence on computer vision, 2425–2433.

Cao, J.; Gan, Z.; Cheng, Y.; Yu, L.; Chen, Y.-C.; and
Liu, J. 2020. Behind the Scene: Revealing the Secrets of
Pre-trained Vision-and-Language Models. arXiv preprint
arXiv:2005.07310.

Chen, J.; Yang, Z.; and Yang, D. 2020. Mix-
text: Linguistically-informed interpolation of hidden space
for semi-supervised text classification. arXiv preprint
arXiv:2004.12239.

Chen, R. T.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. Ad-
vances in neural information processing systems, 31.

Chen, Y.-C.; Li, L.; Yu, L.; Kholy, A. E.; Ahmed, F.; Gan,
Z.; Cheng, Y.; and Liu, J. 2020. Uniter: Universal image-text
representation learning. In ECCV.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL.

Fukui, A.; Park, D. H.; Yang, D.; Rohrbach, A.; Darrell,
T.; and Rohrbach, M. 2016. Multimodal Compact Bilinear
Pooling for Visual Question Answering and Visual Ground-
ing. .

Gan, Z.; Chen, Y.-C.; Li, L.; Zhu, C.; Cheng, Y.; and Liu,
J. 2020. Large-Scale Adversarial Training for Vision-and-
Language Representation Learning. NeurIPs.

Gokhale, T.; Banerjee, P.; Baral, C.; and Yang, Y. 2020.
VQA-LOL: Visual question answering under the lens of
logic. ECCV.

Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and
Parikh, D. 2016. Making the V in VQA Matter: Elevating
the Role of Image Understanding in Visual Question An-
swering. arXiv:1612.00837.

Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and
Parikh, D. 2017. Making the v in vqa matter: Elevating the
role of image understanding in visual question answering.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 6904–6913.

Hao, W.; Li, C.; Li, X.; Carin, L.; and Gao, J. 2020. Towards
learning a generic agent for vision-and-language navigation
via pre-training. In CVPR.

Hochreiter, S.; and Schmidhuber, J. 1996. LSTM can solve
hard long time lag problems. Advances in neural informa-
tion processing systems, 9.

Hu, X.; Yin, X.; Lin, K.; Wang, L.; Zhang, L.; Gao, J.;
and Liu, Z. 2020. VIVO: Surpassing Human Performance
in Novel Object Captioning with Visual Vocabulary Pre-
Training. arXiv preprint arXiv:2009.13682.

Hudson, D. A.; and Manning, C. D. 2019. GQA: a new
dataset for compositional question answering over real-
world images. In CVPR.

Iyyer, M.; Wieting, J.; Gimpel, K.; and Zettlemoyer, L.
2018. Adversarial example generation with syntacti-
cally controlled paraphrase networks. arXiv preprint
arXiv:1804.06059.

Jiang, H.; Misra, I.; Rohrbach, M.; Learned-Miller, E.; and
Chen, X. 2020. In Defense of Grid Features for Visual Ques-
tion Answering. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 10264–10273.

Junczys-Dowmunt, M.; Grundkiewicz, R.; Dwojak, T.;
Hoang, H.; Heafield, K.; Neckermann, T.; Seide, F.; Ger-
mann, U.; Fikri Aji, A.; Bogoychev, N.; Martins, A. F. T.;
and Birch, A. 2018. Marian: Fast Neural Machine Transla-
tion in C++. In Proceedings of ACL 2018, System Demon-
strations, 116–121. Melbourne, Australia: Association for
Computational Linguistics.

Kant, Y.; Moudgil, A.; Batra, D.; Parikh, D.; and Agrawal,
H. 2021. Contrast and classify: Training robust vqa models.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 1604–1613.

Li, L.; Lei, J.; Gan, Z.; and Liu, J. 2021. Adversarial vqa: A
new benchmark for evaluating the robustness of vqa models.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2042–2051.

Li, X.; Yin, X.; Li, C.; Hu, X.; Zhang, P.; Zhang, L.; Wang,
L.; Hu, H.; Dong, L.; Wei, F.; et al. 2020. Oscar: Object-
Semantics Aligned Pre-training for Vision-Language Tasks.
In ECCV.

Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. In NeurIPS.

Majumdar, A.; Shrivastava, A.; Lee, S.; Anderson, P.;
Parikh, D.; and Batra, D. 2020. Improving Vision-and-
Language Navigation with Image-Text Pairs from the Web.
arXiv preprint arXiv:2004.14973.

Murahari, V.; Batra, D.; Parikh, D.; and Das, A. 2020. Large-
scale Pretraining for Visual Dialog: A Simple State-of-the-
Art Baseline. In ECCV.

Reimers, N.; and Gurevych, I. 2019. Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks.
arXiv:1908.10084.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-
cnn: Towards real-time object detection with region proposal
networks.



Rosenberg, D.; Gat, I.; Feder, A.; and Reichart, R. 2021.
Are VQA systems rad? measuring robustness to aug-
mented data with focused interventions. arXiv preprint
arXiv:2106.04484.

Selvaraju, R. R.; Tendulkar, P.; Parikh, D.; Horvitz, E.;
Ribeiro, M.; Nushi, B.; and Kamar, E. 2020. Squinting at
vqa models: Interrogating vqa models with sub-questions.
CVPR.

Shah, M.; Chen, X.; Rohrbach, M.; and Parikh, D. 2019.
Cycle-consistency for robust visual question answering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 6649–6658.

Shetty, R. R.; Fritz, M.; and Schiele, B. 2018. Adversarial
scene editing: Automatic object removal from weak super-
vision. In NeurIPs.

Shi, L.; Shuang, K.; Geng, S.; Su, P.; Jiang, Z.; Gao, P.;
Fu, Z.; de Melo, G.; and Su, S. 2020. Contrastive Visual-
Linguistic Pretraining. arXiv preprint arXiv:2007.13135.

Wang, Y.; Joty, S.; Lyu, M. R.; King, I.; Xiong, C.; and Hoi,
S. C. 2020. Vd-bert: A unified vision and dialog transformer
with bert. arXiv preprint arXiv:2004.13278.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu,
J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest,
Q.; and Rush, A. M. 2019. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. ArXiv,
abs/1910.03771.

Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; and He, K. 2017.
Aggregated Residual Transformations for Deep Neural Net-
works. 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Xu, X.; Chen, X.; Liu, C.; Rohrbach, A.; Darrell, T.; and
Song, D. 2018. Fooling vision and language models despite
localization and attention mechanism. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4951–4961.

Yang, Z.; Hu, Z.; Salakhutdinov, R.; and Berg-Kirkpatrick,
T. 2017. Improved variational autoencoders for text model-
ing using dilated convolutions. In International conference
on machine learning, 3881–3890. PMLR.

Yu, L.; Poirson, P.; Yang, S.; Berg, A. C.; and Berg, T. L.
2016. Modeling context in referring expressions. In ECCV.

Zellers, R.; Bisk, Y.; Farhadi, A.; and Choi, Y. 2019. From
recognition to cognition: Visual commonsense reasoning. In
CVPR.

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.

Zhou, L.; Palangi, H.; Zhang, L.; Hu, H.; Corso, J. J.; and
Gao, J. 2020. Unified vision-language pre-training for image
captioning and vqa. In AAAI.

Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.


